
Dynamic Profile Activation for Enhancing Security
in Android Devices

Venkata Sai Abhishek Gogu, Venkata Sai Teja and Jahnavi Agepati

Students, Sree Vidyanikethan Engineering College,Tirupati, Andhra Pradesh, INDIA -517501.

Abstract— It’s been only a decade with its advent yet
smartphone technology is so successful that business and their
staff have trouble imagining a day without them. It helps them
stay connected and updated everywhere. These smartphones
support tens of thousands of apps and still growing every day.
Companies allow employee owned smartphone devices as their
performance can be further uplifted with such applications.
But it induces security worries about data breach, scams, theft
that concerns the use of smartphone devices. Here in this paper
we try to overcome that by developing a policy based
framework pertaining to necessary separation of applications
and data on the Android platform and define a set of separate
profiles in a single smartphone device. Each and every profile
has set of policies associated with it. The rules associated with
the profile can be altered at our convenience and they
automatically switch from one security profile to another
based on our location. The result of the full implementation of
the security profiles confirms the reliability of the system

Keywords— Activity Manager Service,Authentication,
Context Detection, Data isolation.

I. INTRODUCTION
As the whole world is going into the new phase of
technological performance, our needs have become more
sophisticated. One of the finest and biggest technological
advancements is the creation of smart phone. Smart phones
are changing the way people around the world live, work,
study, communicate and share information Everyone try to
have a smart phone as having a smart phone is beneficial we
can do company work on MS Office and can go through our
e-mails anytime and anywhere and many more things. As we
look for convenience, we respect the devices which combine
multiple features and which give us more mobility. The
Android OS is such most popular platform with 82 percent
market share. On the other hand, we need security, quality,
and effectiveness of these smartphones to be maintained to
the highest level possible. Companies these days allow their
employees to bring their own device policy. More and more
companies nowadays are providing mobile versions of their
desktop applications as allowing access to enterprise
services with smartphones increases employee productivity.
Many manufacturers these days are following this trend by
producing smartphones that support two subscriber
identification modules (SIMs) at the same time. Inspite of
the advantages of using a smartphone in the company
environment there are certain security issues regarding their
usage which may lead to company losses. For example,
malicious applications may grant permissions to
MMS,emails and SMS. In such scenarios data stored in the
smartphone containing company confidential data is the

only reason for huge losses. This poses serious security
concerns to sensitive corporate data, exceptionally when the
generic security mechanisms offered by the platform are not
sufficient to protect the users from such attacks. A possible
solution to the above specified problem is isolation. By
having applications and data related to work separated from
recreational applications and private/personal data. Within
the same device, we can have separate security
environments. A security environment will be restricted to
sensitive/corporate data and trusted apps only. A second
security environment could be used for entertainment where
third-party games can be allowed for home purposes. But
the key concept here is applications from the second
environment should not able to access data of the first
environment thus the risk of leakage of sensitive
information can be greatly diminished. This application can
be done by means of the concept Of virtualization.
Through virtualization different instances of an OS can run
separately on the same device. But the concept of
virtualization is more effective in full-fledged devices (PC
and servers), it is too resource demanding for embedded
systems such as smartphones. So we try another approach of
Para virtualization. Unlike full virtualization where the
guest OS is not aware of running in a virtualized created
environment, unlike in para-virtualization it is necessary to
modify the guest OS to boost performance. Yet the Para
virtualization concept i still under development for
smartphone devices. Even if it existed we cannot fully make
use of virtualization concept to create isolation as it suffers
from having a coarse grained approach. We cannot define
the environment and security policies as we need, and also
the switching among environments always require user
interactions and it could take a significant amount of time
and power.

1.1 TERMS OF ANDROID SECURITY:
As we are trying to develop secure profile environments
there are certain terms and concepts which we should be
aware of. Activities represent a user interface; Services
execute background processes; Broadcast Receivers are
mailboxes for communications within components of the
same application or belonging to different apps; Content
Providers store and share applications data. Application
components communicate through messages called Intents.
Android implements two levels of enforcement. One at the
Linux kernel level and the other at application framework
level. At the Linux kernel level Android is a multi-process
system. During installation, an application is assigned with a
unique Linux user identifier (UID) and a group identifier

Venkata Sai Abhishek Gogu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1345-1349

www.ijcsit.com 1345

(GID). Thus, in the Android OS each application is executed
as a different user process within its own isolated address
space In Android, by default, all the files in the user’s home
directory can be read, written and executed by the owner and
the users from the same group as the owner. All other users
cannot work with these files. So as different applications by
default have different user identifiers files created by one
application cannot be accessed by another. In the application
framework level, Android provides access control through
the inter-component communication (ICC) reference
monitor. It gives mandatory access control (MAC)
enforcement on how applications access the different
components of it. In the simple words, protected features are
assigned with unique security labels known as permissions.

II. PROCEDURE FOR PAPER SUBMISSION
This section provides an outline of the related work. In
particular, we discuss approaches for smart phones
enriching android security by projecting solutions based on
virtualization and secure container.
2.1 SECURE CONTAINER:
Creation of an isolated environment at an application layer
level is done by the special mobile client application called
as Secure Container. It provides authentication for an
enterprise administrator to generate the policies which in
turn helps to control the isolated environment. It does not
help to control the actions of the user outside the container.
This kind of technique doesn't need the modification of the
image of the system and also widely analyses in the research
community.
App security system popularly known as App Guard is a
Java application that disassembles apk files. Inline security
checks dangerous instructions as per the instructed policy
and reassembles by signing packages. Henceforth, at
runtime before compiling the dangerous code Appsecurity
does a security check and as per the policy, if the instruction
is not allowed then an exception is thrown. The functions in
these applications are implemented in a standalone android
services, which performs the additional checks. Many
solutions use security container implemented as a user
application in there solution.NitroDesk TouchDown and
Good offer solution with prefixed set of business
functionality in the container. Some more solutions, offer a
set of basic applications and an SDK that will used as to
develop new apps, if needed.

2.2 MOBILE VIRTUALIZATION:
Virtualization provides environments which are isolated
from one another, and from the OS point of view,that are
indistinguishable from the bare hardware. For isolation and
co-coordinating the virtual machines activities, the
hypervisor is responsible. Virtualization has been widely
used in computers as it can:
 (i) enhance security, and
 (ii) decline the cost of applications deployment.

With the improvement in production of mobile devices
and with the increment of their performance capabilities the
main problem of porting virtualization to mobile platforms

became actual. Virtualization for smartphones shows
specific advantages like

 (i)The probability to separate communication
subsystems high-level application code

 (ii)An prospect to afford license separation
 (iii)A outlook to increase the security of

communication stack.
However, there are still several barriers for the adoption

of virtualization in mobile devices. The main one is that
ARM architecture, which is the most popular architecture
for mobile devices, has a non-virtualisable instruction set
architecture (except Cortex-A15 design, which adds
hardware-assisted virtualization capabilities). So as
efficiency is a major concern in embedded virtualization,
full virtualization approaches (emulation and binary
translation) are not yet applicable for these devices because
they are computational expensive.

III. PROPOSED SYSTEM

Our system helps to give an abstraction for isolating data
and applications dedicated to many contexts that are to be
installed in a single smartphone device. For particular,
corporate data and applications can be isolated from
personal data and applications within a single smart phone
device. Our concept provides chamber where data and
applications are stored. Our system provides enforcement
mechanism that guarantees data and applications within a
chamber are isolated from others chambers data and
applications. These chambers are called Security Managers
in our system. Generally, a SM is a set of policies that
classify what applications can be executed and what data can
be accessed. One of the important feature introduced in our
system is the automatic activation of SM depending on
context and also the location of the system, in which the
smartphone is being used. SMs are joined with one or more
interpreted of Context.
A context is defined as a Boolean expression determined
over any instruction that can be gained from the
smartphone’s sensors (for e.g., GPS sensor). Logical sensors
are functions which collaborate raw data from physical
sensors such that to capture peculiar user performance.
When a context solution performs true, SP correlated with
such a context is triggered. It is an achievable situation when
definite contexts, which are linked with various SMs, may
be active at same time. To resolve such contests, each SM is
also accredited such that allowing our system to activate the
SM with the maximum priority. If SMs have the same
priority, the SM, which activated first, will retain as active.
Our system allows a user to manually switch to a designed
SM. To this end, our system presents a system applications
that the user will be able to exploit for driving our system to
trigger a given SM. Nonetheless, this conduct can be
blocked to dodge that the user activates the useless or
undesirable SM in a given context (for example, switching
to a private SM when at home). Each SM is correlated with
an owner of the profile and can be encrypted with a
password. A SM can be generated/revise locally through an
application installed on the mobile phone. Additionally, our
system supports remote SM management. The latter

Venkata Sai Abhishek Gogu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1345-1349

www.ijcsit.com 1346

possibility may be used and by use of the mobile for
monitoring his/her personal SM, while the latter may be
engaged by an enterprise administrator to monitored the
work SM. To prevent that the user tinkers with the work SM,
the security administrator conserve the work SM with a
password. In this manner, our system can be used for
attaining a Mobile Device Management to manage remotely
the security settings of a fleet of smart phone devices

IV. IMPLEMENTATION
One of the endowments of our system is that it can
automatically shift SMs based on the current Context.
Context Detector System is accounted for authorizing
Context definitions and for advising the audience about the
triggering or shutting off a Context. The Security Profile
Manager peripheral, which is one of these audience, is
triggered about the vary through
the bring back functions on two values such as True and
False of the context_id, which in return correspond to
triggering and shutting off a Context discretely. The context
id specify sum to a Context id. Hence detection utility in our
system context is detached from the remaining part of the
system, it may be freely stretched by collaborating
remaining solutions of context detection. When the system
reboots, our system picks from db information about every
Contexts and respective SM. Our system preserves this data
in a compile time map in the form of <Ci;<SMk;prt>>,
where Ci is the id of Context and (SPk;prt) is tuple, which is
related to Context Ci and also contains of SM id. The
priority prtk that corresponds to this profile. When the
Context Detector System recognise that Context Ci becomes
live i.e., the Context definition is changed to true, we pick
from this map the respective tuple (SMk;prt) and mention it
in the set of current SMs.As more than a Contexts would be
active at the same time, there will be more than one SM to
switch to. In this case, from the set of active SMs the system
with the maximum priority is selected. If the listed SM id
varies from id of the presently running SM, the Context

Detector System projects a signal to Moses Hypervisor to
shift to the newly created profile.

V. PERFOMANCE DISCUSSION
In this section, we address on the detailed experiments we
ran to evaluate the performance of our system. For all the
analysis, we used a Google Nexus S phone.

5.1 POWER OVERHEAD
To calculate the power overhead produced by our system,
we performed the following tests. We charged the battery of
our device to the 100 percent. Then, every 10 minutes we
run five system applications (steadily) via a monkey runner
script: Browser, Clock, Contacts, Calculator and Email
applications. For each of the application, the script executed
prevailing operations representative for the apps (for
example, additions of numbers in Calculator application,
browsing several web pages in Browser Application,
changing time in clock application, calling a number in
contacts application and creating an account in Contacts
application, and composing and sending a email in Email
app).
Each experiment remained for a sum of 180 minutes. We
carried this experiment for two types of systems: Stock
Android, and mobile with our system pre-installed in it and
it supports SM switch changes (the system changes and
switch the two profiles every 30 minutes).During each
operation, every 1 minute, our system gauged the level of
the battery and save this value into a log file. For each of the
two studied systems, we executed the test 10 times and mean
the resultant values. The outcome of this experiment is also
reported. We remarked that the curves for the two designed
systems behave alike. This proves that the fact that our
system is just running, or even switching between the
context does not earn a predictable power overhead.

5.2 REPOSITORY OVERHEAD
One of the most cogent overheads produced by our system is
the repository overhead. Indeed, the isolation of data for

Venkata Sai Abhishek Gogu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1345-1349

www.ijcsit.com 1347

different SMs reminds that some application data will be
replicated in some other different profiles.
In generic terms, the repository size utilized by a system can
be determined by the following equation:
size = size (OS) + Application Executable files size (AEj) +
App data files (ADj)

where AEj and ADj , are the application executable files and
the application data files of the jth application, and OS is the
operating system of the mobile system. In the specific case,
in our system,
(ADj)in our system = where i in 1 to (n+1) and j
in 1 to k
where size of (ADij), is the size of the data of the jth
application in the ith SM, k is the number of installed
applications, and n is the number of SMs. One additional
copy of application data (i.e., the (n+1)th one) is required to
store initial information of all applications. If a new SM is
constructed, we need a clear copy of app data to be
duplicated into this freshly created profile. Thence, our
system stock a copy of app data just after the installing the
application, this copy is used for later duplicates when a new
SM is created. It should be specified that for our system only
the antecedent data of apps are replicated.
The data generated by applications during compilation time
are not duplicated between SMs. Secondly, the data of apps,
which are not authorize in a profile, are not photocopied into
the profile. When comparing our system with rivalry
approaches, our system produces fewer repositories
overhead. For particular, in case of mobile virtualization, not
only app data are replicated (as for system), but also app
executable files and an OS (sometimes fully or may be
partially). Thus, our system sums less overhead analyzing to
this set of ways as it only works with a copy of app
executable files.

5.3 SWITCHING PROFILES OVERHEAD
In this part, we present the outcome of the experiments
gauging the time needed to switch between SMs. We recall
that in the course of the profile switch (from an old to a
newly created profile), our system performs the following
operations:

1. The unmounting of the document folders of the old
security profile,

2. The mounting of the document folders of the new
profile,

3. The discharge of the old and the charging of the
newly specified Special Rules.

Henceforth, the time to shift between SMs should depend on
the sum of the number of specified Special Rules and the
number of user applications. To check out the dependency
between the time and these parameters we ran a sets of
experiments.
Firstly, we measured the time essential to transform SMs
varying the total number of user apps. Then, we did the same
measurement while changing the number of Special Rules.
To calculate this time, we take a call function i.e.,
SystemClock.elapsedRealtime () by putting this function
before and after the operations such as switching, and
measured the difference between the values produced by
this function. To delve into the dependency between the
number of apps we changed the number of user apps from 0
to 10 and the time. For each number of apps, our system was
used in a clean and clear manner (i.e., the system had been
deployed on the mobile device just before the experiment).
Then, a SM was created allowing all apps to be launched.
Then, we gauged the time of shift between this newly
created profile and DEFAULT SM. For every number of
apps we recursively done the shift for 30 times and then
measured the mean time of the shift. For entire attempts we
made, have the same set of 10 apps was used.

From this figure, we noticed that the shifting time
increments with the number of apps: moving from 1,000 ms
for 0 applications to 3,000 ms for 30 apps. Time for profile
shift as a function of the number of: (a) User applications,
(b) special rules. 3,496 ms for 10 applications. The
increment of the time is correlated with the enhancement of
mounting and unmounting operations that our system
behaves during the shift. Moreover, we marked that the time
is not consistently rising with the increment of the number of
apps.
 Secondly, our examination was conducted equivalently
to the first one, but here, in this case we discrete the number
of specified Special Rules assigned to a new SM: from 0 to

Venkata Sai Abhishek Gogu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1345-1349

www.ijcsit.com 1348

50, incrementing by 10 rules every time. The consequence
of this research are examined in above figure. At that time
we can see, the time of the shift gradually raising with the
enhancement of the number of rules assigned to the user
apps. We can also mark that the function standard deviation
for the examined values is noteworthy. We also observed
that the time for the early change of profiles is appreciably
mightier than for the following shifts. For particular, for
four apps the time taken for the first switch is 2143 ms
while for the second shift is just 1,431 ms. Indeed, during
the first shift, for each app our system has to replicate the
initial information of an app to a newly created profile.

VI. SECURITY MODEL
Our System consists of the several units and Base
fundamental part of Our System is the approach of Context.
The component CDS(Context Detector System) is
authoritative for recognizing context
activation/deactivation. When such an act happens, the
Context Detector System sends a bulletin about this to the
SPM(Security Profile Manager). The Security Profile
Manager clutch the information associating a SM with one
or more number of Context. The Security Profile Manager is
authorized for the enlivening and demilitarize of SMs. The
Security Profile Manager enforces the following logic:
 If any new Context that is activated resembles to active
SM then the proclamation is overlook; If the SM equivalent
to a new Context that is active at present, has a lessened or
balanced priority to the currently running SM, then the
bulletin is ignored. The Our SAM (System App Manager)
and the Our SRM(System Rules Manager). The erstwhile is
responsible for authorizing which applications are allowed
to be compiled within a SM. The closing one takes care of
managing Special Rules.The Our SPM(System Policy
Manager) enact as the policy administration point (PAP) in
Our System. It covers the API for producing, renewing and
evacuating all our System policies. It also permits a user to
designate, customize, evacuate audited Contexts and
accredit them to SMs. However, this part also curbs
approach to Our System policy database also called as
system.db file permitting only apps with exceptional
acknowledgement to get around with this component. The
imposition of separated SMs lack special factors to
monitorize application processes and file system views.
When a new SM is triggered, it might deny the compilation
of some apps allowed in the last profile. If these apps are
functioning during the profile shift, then we should stop
their processes. Our System Reaper is the peripheral
authorized for enclose processes of apps i.e., no longer
allowed in the new SM after the shift. In our System, apps
have authority to different data relying on the active profile.
I It supports different file system view to isolate data
between profiles. This functionality is considered by our

System Mounter. To permit the user of the smartphone to
interact with Our System, we provide two System
applications: i) the System SM Changer ii)the System
Policy Gui. The System SM Changer permits the user to
manually trigger a SM. It interacts with the System
Hypervisor and dispatch a signal to shift the profile enforced
by the user. The System Policy Gui permits the user to
monitor SMs.

VII. CONCLUSION
Security is vulnerable and valuable; resistance to security
breaches is a valuable asset to the company. This perfect
software based profile security enhances implementation of
security in smart phone devices. Since it acts at system level
we will be able prevent applications not to escape the
security definitions. However sometimes android may
assign same UID to some applications so in such
applications we must restrict to same rules to be defined
over them. We utilize the functionality of Taintdroid ,
virtualization by overcoming their limitations. A major
drawback of the system is the separation of data for different
SMs means that some application information will be
duplicated in different profiles which induces storage
overhead. We can further improve the performance of our
system by developing system policy templates that can be
simply selected and associated to the application.

REFERENCES

[1] Android Open Source Project (AOSP), http://source.android. com/,
2014.

[2] By the authors Y. Zhou, X. Zhang, X. Jiang, and V. Freeh, “Taming
InformationStealing Smartphone Applications (on Android),”
mentioned in Proc. Fourth Int’l Conf. Trust and Trustworthy
Computing (TRUST ’11), pp. 93107

[3] “Understanding Android Security,”,by W. Enck, M. Ongtang, and P.
McDaniel in IEEE Security and Privacy, vol. 7, no. 1, pp. 50-57, feb

[4] G. Russello, B. Crispo, E. Fernandes, and Y. Zhauniarovich,
“YAASE: Yet Another Android Security Extension,” Proc. IEEE
Third Int’l Conf. Social Computing and Privacy, Security, Risk and
Trust (SocialCom/PASSAT), pp. 1033-1040, 2011.

[5] D. Kramer, A. Kocurova, S. Oussena, T. Clark, and P. Komisarczuk,
“An Extensible, Self Contained, Layered Approach to Context
Acquisition,” Proc. Third Int’l Workshop Middleware for Pervasive
Mobile and Embedded Computing (M-MPAC ’11), pp. 6:1-6:7, 2011

[6] E. Yuan and J. Tong, “Attributed Based Access Control (ABAC) for
Web Services,” Proc. IEEE Int’l Conf. Web Services (ICWS ’05), pp.
561-569, 2005.

[7] B. van Wissen, N. Palmer, R. Kemp, T. Kielmann, and H. Bal,
“ContextDroid: An Expression-Based Context Framework for
Android,” Proc. PhoneSense ’10, pp. 1-5, 2010.

[8] Divide Webpage, http://www.divide.com/, 2014
[9] OKL4 Microvisor, http://www.ok-labs.com/products/okl4-

microvisor, 2014.
[10] S. Smalley and R. Craig, “Security Enhanced (SE) Android: Bringing

flexible MAC to Android,” Proc. 20th Ann. Network and Distributed
System Security

[11] NitroDesk TouchDown, http://www.nitrodesk.com/
TouchDown.aspx, 2014.

Venkata Sai Abhishek Gogu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1345-1349

www.ijcsit.com 1349

